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ISR Cyber 
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How do we address the data storage and compute challenges 
posed by the problem scales of interest to the DoD/IC community? 

Petabyte 

Terabyte 

NSA-RD-2013-056001v1

Web scale. . .

50 billion vertices, 1 trillion edges

271 EB adjacency matrix

29.5 TB adjacency list

29.1 TB edge list

Internet graph from the Opte Project
(http://www.opte.org/maps)

Web graph from the SNAP database
(http://snap.stanford.edu/data)

Paul Burkhardt, Chris Waring An NSA Big Graph experiment

NSA-RD-2013-056001v1

Social scale. . .

1 billion vertices, 100 billion edges

111 PB adjacency matrix

2.92 TB adjacency list

2.92 TB edge list

Twitter graph from Gephi dataset
(http://www.gephi.org)

Paul Burkhardt, Chris Waring An NSA Big Graph experiment

Social 

NSA-RD-2013-056001v1

Brain scale. . .

100 billion vertices, 100 trillion edges

2.08 mNA · bytes2 (molar bytes) adjacency matrix

2.84 PB adjacency list

2.84 PB edge list

Human connectome.
Gerhard et al., Frontiers in Neuroinformatics 5(3), 2011

2
NA = 6.022⇥ 1023mol�1

Paul Burkhardt, Chris Waring An NSA Big Graph experiment

Brain 

P. Burkhardt and C. Waring, “An NSA Big Graph experiment,” National 
Security Agency, Tech. Rep. NSA-RD-2013-056002v1, 2013. 

NSA  
Big Graph  

Experiment 
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Big Data and HPC 
Current approach: Map/Reduce 

•  Map ( <k1,v1> )  à  <k2,v2>  
•  Reduce (k2, {<k2,v2>}) à v3 
•  Each map-reduce step reads 

from and writes to disk 

•  Map/Reduce provides one way to deal with large problem 
sizes, but is too limited and too slow 

–  Poorly suited for iterative sparse matrix and graph 
algorithms when fast runtime is essential 

•  Our approach uses High Performance Computing 
techniques to tackle big data 

–  Leverage HPC sparse linear algebra packages (e.g., 
Trilinos) 
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•  Big Data and High Performance Computing 
•  Anomaly Detection in Graphs 
•  Signal Processing for Graphs (SPG) 
•  Improving Sparse Matrix-Vector Multiplication (SpMV) 

Performance 
•  Improving Performance of Moving Average Filter 
•  Related Ongoing and Future Work 
•  Summary 

Outline 
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Example Applications of Graph Analytics 

Cyber 

•  Graphs represent 
 communication patterns of 
 computers on a network 

•  1,000,000s – 1,000,000,000s 
network events 

•  GOAL: Detect cyber attacks 
or malicious software 

Social 

•  Graphs represent 
 relationships between 
 individuals or documents 

•  10,000s – 10,000,000s 
individual and interactions 

•  GOAL: Identify hidden 
social networks 

•  Graphs represent entities 
 and relationships detected 
 through multiple sources 

•  1,000s – 1,000,000s tracks 
and locations 

•  GOAL: Identify anomalous 
patterns of life 

ISR 

Cross-Mission Challenge: 
Detection of subtle patterns in massive multi-source noisy datasets 
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Example: Network Traffic Surrogate 

Graph Statistics 

•  R-Mat 
•  Parameters derived from network 

traffic data 
•  1024 vertices 
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Big Data Challenge:  Activity Signatures 

Graph Statistics 

•  R-Mat 
•  Parameters derived from network 

traffic data 
•  1024 vertices 
•  Anomaly: 12 vertices 
•  Anomaly: 1% of graph                

(often smaller) 

Challenge: Activity signature is typically a weak signal 
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•  Big Data and High Performance Computing 
•  Anomaly Detection in Graphs 
•  Signal Processing for Graphs (SPG) 
•  Improving Sparse Matrix-Vector Multiplication (SpMV) 

Performance 
•  Improving Performance of Moving Average Filter 
•  Related Ongoing and Future Work 
•  Summary 

Outline 
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Statistical Detection Framework for Graphs 

Develop fundamental graph 
signal processing concepts 

Demonstrate in simulation 

Apply to real data 

THRESHOLD 

NOISE 
SIGNAL 
‘+’ 

NOISE 
H0 H1 

Graph Theory  Detection Theory  
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Residuals Example: Anomalous Subgraph 

- = H1 

Detection framework is designed to detect coordinated 
deviations from the expected topology 

•  Residual graph represents the difference between the observed and 
expected 

•  Coordinated vertices (subsets of vertices connected by edges with 
large edge weights) in residual graph will produce much stronger 
signal than uncoordinated vertices 

Graph Model 
E[G] 

Observed Graph 
G1 

Residual Graph 
R[G1] 
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SPG Processing Chain 

GRAPH MODEL 
CONSTRUCTION 

RESIDUAL 
DECOMPOSITION 

COMPONENT 
SELECTION 

ANOMALY 
DETECTION IDENTIFICATION TEMPORAL 

INTEGRATION 

DIMENSIONALITY REDUCTION 

Input 

•  Graph 
•  No cue 

Output 

•  Statistically anomalous 
subgraph(s) 
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Anomaly Detection: Setup Phase 

GRAPH MODEL 
CONSTRUCTION 

RESIDUAL 
DECOMPOSITION 

COMPONENT 
SELECTION 

ANOMALY 
DETECTION IDENTIFICATION TEMPORAL 

INTEGRATION 

H0 – Null hypothesis, no signal 
H1 – Alternative hypothesis, signal 

Detection Setup 

× 1. Monte-Carlo simulations to 
generate density functions 

2. ROC-curve generated from 
density function 

3. Threshold chosen from ROC-
curve (e.g., based on specific 
false alarm rate) 

1. Monte-Carlo simulations to 
generate density functions 

1. Monte-Carlo simulations to 
generate density functions 

2. ROC-curve generated from 
density function 

Threshold 
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Anomaly Detection 

GRAPH MODEL 
CONSTRUCTION 

RESIDUAL 
DECOMPOSITION 

COMPONENT 
SELECTION 

ANOMALY 
DETECTION IDENTIFICATION TEMPORAL 

INTEGRATION 

Test statistic value significantly  
larger than test statistic value 

threshold corresponding to 1% 
false alarm rate 

Test statistic calculated for 
observed graph: 

Threshold 

H0 – Null hypothesis, no signal 
H1 – Alternative hypothesis, signal 

Test statistic 
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Detection Methods, Effectiveness, and Cost 
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Computation Cost 

Notional Comparison of Power and Effectiveness 

•  More powerful methods require 
more computation 

•  For detection of subtle 
anomalies, need to calculate 
100s of eigenvectors fast 

SPCA 

1 EV 

2 EV 

σ1, λ1 

χ2 in 2 Principal 
Components 

Eigenvectors L1 
Norms 

Spectral Norm 

100s EVs 

SPCA = Sparse Principal Component Analysis 

O((|E|r+|V|r2+r3)h)* to compute r eigenvectors 
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Computational Focus: Dimensionality Reduction 

GRAPH MODEL 
CONSTRUCTION 

RESIDUAL 
DECOMPOSITION 

COMPONENT 
SELECTION 

ANOMALY 
DETECTION IDENTIFICATION TEMPORAL 

INTEGRATION 

DIMENSIONALITY REDUCTION 

•  Dimensionality reduction dominates computation 
•  Eigen decomposition is key computational kernel 
•  Parallel implementation required for very large graph 

problems 
-  Fit into memory 
-  Minimize runtime 

Need fast parallel eigensolvers 
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Eigenvalue Problems 

B = (A−E[A]) Bxi = λi xi, i =1,…,m
Solve: 

Modularity Matrix 
 
 

 
 
 E[As ]=
k kT

2 e

Moving Average Filter 
 
 

 
 
 

|e| – Number of edges in graph G(A) 
  k – degree vector 
        ki = degree(vi), 
 

E[As (t)]= hiAs (t − i)
i=1

T

∑


h =

h
argmin As (t)− hiAs (t − i)

i=1

T

∑
Fvi ∈G(A)
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Modularity Matrix: Computation Breakdown 

Bx = Asx − k (k
Tx) / (2 e )

Bx can be computed without storing B (modularity matrix) 

dense matrix-vector 
product: O(|V|2) 

sparse matrix-vector 
product: O(|e|) 

Matrix-vector multiplication is at the heart of eigensolver algorithms 

Operator apply: 

dot product: O(|V|) 
scalar-vector product: O(|V|) 
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 Moving Average Filter: Computational Breakdown 

B(t) = As (t)−E[As (t)]

Key computational kernel is sparse matrix-dense vector multiplication 

sparse matrix-vector 
product: O(|e|+|eE[A]|) 

Matrix-vector multiplication is at the heart of eigensolver algorithms 

B(t)x

Since E[A(t)] is sparse, B(t) will be sparse 

Operator apply: Operator: 

E[As (t)]= hiAs (t − i)
i=1

T

∑
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Parallel Implementation 

•  Using Anasazi (Trilinos) Eigensolver 
•  64 bit global ordinals 

–  Necessary for graphs with 231 vertices or more 

•  User defined operators 
–  Modularity matrix 
–  Moving average filter 
–  Apply defined efficiently for particular operator 

•  Block Krylov-Schur method 
–  Symmetric 
–  Eigenvalues with largest real component 
–  Blocksize=1 
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Numerical Experiments 

•  Matrices 
–  R-Mat (a=0.5, b=0.125, c=0.125, d=0.25)  

•  Average nonzeros per row: 8 
•  Number of rows: 222 to 232 

•  Two systems 
–  LLGrid (MIT LL)  

•  274 compute nodes (8,768 cores) 
•  Node: two 16-core AMD Opteron 6274 (2.2 GHz) 
•  Network: 10 GB Ethernet 

–  Hopper* (NERSC) 
•  Cray XE6 
•  6,384 nodes (153,216 cores) 
•  Node: two 12-core AMD 'MagnyCours' (2.1 GHz) 
•  Network: 3D torus (Cray Gemini) 

•  Initially: 1D random row distribution (good load balance) 

* This research used resources of the National Energy Research Scientific Computing Center, which is supported 
by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. 
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Weak Scaling – Hopper* 

* This research used resources of the National Energy Research Scientific Computing Center, which is supported 
by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. 

Solved system for up to 4 billion vertex graph  

1"

10"

100"

1000"

16" 32" 64" 128" 256" 512" 1024" 2048" 4096" 8196" 16384"

Ti
m
e%
(s
)%

Number%of%Cores%

Run2me%to%Find%1st%Eigenvalue%(R<MAT,%218%ver2ces%per%core)%

Hopper"1D"
4 billion vertices 

Runtime to Find 1st Eigenvector 

R-MAT, 218 vertices/core 
Modularity Matrix 

1D random  
partitioning 
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Strong Scaling Results 

Scalability limited and runtime increases for large numbers of cores 

1.00$

10.00$

100.00$

1000.00$

1$ 4$ 16$ 64$ 256$ 1024$ 4096$ 16384$

Ti
m
e%
(s
)%

Number%of%Cores%

LLGrid$1D$

Hopper$1D$

R-MAT, 223 vertices 
Modularity Matrix 

Runtime to Find 1st Eigenvector 

* This research used resources of the National Energy Research Scientific Computing Center, which is supported 
by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. 

1D random  
partitioning 
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Finding Multiple Eigenvectors – LLGrid 

Significant increase in runtime when finding additional eigenvectors 

1"

10"

100"

1000"

10000"

100000"

1" 4" 16" 64"

Ti
m
e%
(s
)%

Number%of%Cores%

1 eigenvector 

2 eigenvectors 

10 eigenvectors 

100 eigenvectors 

LLGrid system 

R-MAT, 223 vertices 
Modularity Matrix 

1D random  
partitioning 

Time to find 1, 2, 10, 100 eigenvalues/vectors 
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•  Big Data and High Performance Computing 
•  Anomaly Detection in Graphs 
•  Signal Processing for Graphs (SPG) 
•  Improving Sparse Matrix-Vector Multiplication (SpMV) 

Performance 
•  Improving Performance of Moving Average Filter 
•  Summary 

Outline 
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Sparse Matrix-Vector Multiplication 

•  Sparse matrix-dense vector multiplication (SpMV) key 
computational kernel in eigensolver 

•  Performance of SpMV challenging for matrices resulting from 
power-law graphs 
–  Load imbalance 
–  Irregular communication 
–  Little data locality  

•  Important to improve performance of SpMV 

= 
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SpMV Strong Scaling -- LLGrid 

0.1$

1$

10$

100$

1$ 4$ 16$ 64$ 256$ 1024$

Ru
n$

m
e'
(s
)'

Number'of'Cores'

SpMV'Run$me'

LLGrid$

R-Mat, 223 vertices 
Modularity Matrix 

1D random  
partitioning 

Scalability limited and runtime increases for large numbers of cores 
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Data Partitioning to Improve Parallel Sparse 
Matrix-Dense Vector Multiplication 

•  Partition matrix nonzeros 
•  Partition vectors 
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Communication Pattern: 1D Block Partitioning 

NNZ/process 
min: 1.17E+06  
max: 1.18E+06  
avg: 1.18E+06  
max/avg: 1.00  
 
# Messages (Phase 1) 
total: 126  
max: 2  
 
Volume (Phase 1) 
total: 2.58E+05  
max: 4.10E+03  
 

so
ur
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ss
 

destination process P=64 

Nice properties: 
Great load balance 
Small number of messages 
Low communication volume 

2D Finite Difference Matrix (9 point) 
Number of Rows: 223 

Nonzeros/Row: 9 
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Communication Pattern: 1D Block Partitioning 

NNZ/process 
min: 1.88E+05  
max: 4.00E+06  
avg: 1.06E+06  
max/avg: 3.78  
 
# Messages (Phase 1) 
total: 4032  
max: 63  
 
Volume (Phase 1) 
total: 4.02E+07  
max: 1.48E+06  
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ss
 

destination process P=64 

Challenges: 
Poor load balance 
All-to-all communication 

Number of Rows: 223 

Nonzeros/Row: 8 
R-Mat (0.5, 0.125, 0.125, 0.25) 
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Communication Pattern: 1D Random 
Partitioning 

NNZ/process 
min: 1.05E+06  
max: 1.07E+06  
avg: 1.06E+06  
max/avg: 1.01  
 
# Messages (Phase 1) 
total: 4032  
max: 63  
 
Volume (Phase 1) 
total: 5.48E+07  
max: 8.62E+05  
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ss
 

destination process P=64 
Challenges: 
All-to-all communication 

R-Mat (0.5, 0.125, 0.125, 0.25) Number of Rows: 223 

Nonzeros/Row: 8 

Nice properties: 
Great load balance 
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2D Partitioning 

•  More flexibility: no particular part for entire row or column 
•  More general sets of nonzeros assigned parts 

Mondriaan (Vastenhouw, Bisseling) Block/Cartesian 

Fine-grain (Catalyurek, Aykanat) Nested-dissection (Boman, Wolf)* 

*Boman and Wolf, “A Nested Dissection Partitioning Method for Parallel  
Sparse Matrix-Vector Multiplication,” IEEE HPEC 2013. 
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Bounding Number of Messages with 2D 
Partitioning 

•  Use flexibility of 2D partitioning to bound number of messages 
–  Distribute nonzeros in permuted 2D Cartesian block manner  

•  2D Random (Cartesian) – (Hendrickson, et al., Bisseling, Yoo) 
–  Block Cartesian with rows/columns randomly distributed 
–  Cyclic striping to minimize number of messages 

•  2D Cartesian (Hyper)graph  
–  Replace random partitioning with hyper(graph) partititioning to minimize 

communication volume 
*Hendrickson, et al.; Bisseling; Yoo, et al. 
**Boman, Devine, Rajamanickam, “Scalable Matrix Computations on Large Scale-Free Graphs Using 2D Partitioning, SC2013. 

2D Cartesian (Hyper)graph** 2D Random (Cartesian)* 

= = 

(permuted) (permuted) 
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Communication Pattern: 2D Random Partitioning 
Cartesian Blocks (2DR) 

NNZ/process 
min: 1.04E+06  
max: 1.05E+06  
avg: 1.05E+06  
max/avg: 1.01   
 
# Messages (Phase 1) 
total: 448  
max: 7  
 
Volume (Phase 1) 
total: 2.57E+07  
max: 4.03E+05  
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destination process P=64 

Number of Rows: 223 

Nonzeros/Row: 8 

Nice properties: 
No all-to-all communication 
Total volume lower than 1DR 

1DR = 1D Random 

R-Mat (0.5, 0.125, 0.125, 0.25) 
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Communication Pattern: 2D Random Partitioning 
Cartesian Blocks (2DR) 

NNZ/process 
min: 1.04E+06  
max: 1.05E+06  
avg: 1.05E+06  
max/avg: 1.01   
 
# Messages (Phase 2) 
total: 448  
max: 7  
 
Volume (Phase 2) 
total: 2.57E+07  
max: 4.03E+05  
 

so
ur

ce
 p

ro
ce

ss
 

destination process P=64 

Number of Rows: 223 

Nonzeros/Row: 8 

Nice properties: 
No all-to-all communication 
Total volume lower than 1DR 

1DR = 1D Random 

R-Mat (0.5, 0.125, 0.125, 0.25) 
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Communication Pattern: 2D Cartesian  
Hypergraph Partitioning  

NNZ/process 
min: 5.88E+05  
max: 1.29E+06  
avg: 1.05E+06  
max/avg: 1.23     
 
# Messages (Phase 1) 
total: 448  
max: 7  
 
Volume (Phase 1) 
total: 2.33E+07  
max: 4.52E+05  

so
ur
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 p
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ss
 

destination process P=64 

R-Mat (0.5, 0.125, 0.125, 0.25) Number of Rows: 223 

Nonzeros/Row: 8 

Challenges: 
Imbalance worse than 2DR 

Nice properties: 
No all-to-all communication 
Total volume lower than 2DR 

2DR = 2D Random Cartesian 
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Communication Pattern: 2D Cartesian  
Hypergraph Partitioning  

NNZ/process 
min: 5.88E+05  
max: 1.29E+06  
avg: 1.05E+06  
max/avg: 1.23     
 
# Messages (Phase 2) 
total: 448  
max: 7  
 
Volume (Phase 2) 
total: 2.54E+07  
max: 4.80E+05  
 

so
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ss
 

destination process P=64 

R-Mat (0.5, 0.125, 0.125, 0.25) Number of Rows: 223 

Nonzeros/Row: 8 

Challenges: 
Imbalance worse than 2DR 

Nice properties: 
No all-to-all communication 
Total volume lower than 2DR 

2DR = 2D Random Cartesian 
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Improved Results: SpMV – LLGrid 

1.00E+00&

1.00E+01&

1.00E+02&

1& 4& 16& 64& 256&

Ti
m
e%

Number%of%Processors%

LLGrid&1D&

LLGrid&2D&

R-Mat, 223 vertices/rows 

Time needed to compute 10 SpMV operations 

Number of Cores 

Simple 2D method shows improved scalability 
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Improved Results – LLGrid 

Simple 2D method shows improved scalability 

1.00$

10.00$

100.00$

1000.00$

1$ 4$ 16$ 64$ 256$

Ti
m
e%
(s
)%

Number%of%Cores%

LLGrid$1D$

LLGrid$2D$

Runtime to Find 1st Eigenvector 

R-Mat, 223 vertices/rows 
Modularity Matrix 
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Improved Results – NERSC Hopper* 

* This research used resources of the National Energy Research Scientific Computing Center, which is supported 
by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. 

2D methods show improved scalability 

Runtime to Find 1st Eigenvector 

0.10$

1.00$

10.00$

100.00$

1000.00$

1$ 4$ 16$ 64$ 256$ 1024$ 4096$ 16384$

Ti
m
e%
(s
)%

Number%of%Cores%

1D$Random$

2D$Random$

2D$Hypergraph$

R-Mat, 223 vertices 
Modularity Matrix 
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•  High partitioning cost of graph/hypergraph methods must be amortized by 
computing many SpMV operations 

•  Detection** requires at most 1000s of SpMV operations 
•  Expensive partitions need to be effective for multiple graphs 

Challenge with Hypergraph/Graph Partitioning 

1.00E%01&

1.00E+00&

1.00E+01&

1.00E+02&

1.00E+03&

1.00E+04&

1.00E+05&

1& 10& 100& 1000& 10000& 100000& 1000000&

Ti
m
e%(

s)%

Number%of%SpMV%Opera5ons%

Time%to%Par55on%and%Compute%SpMV%opera5ons%

2D&random&

2D&hypergraph&

~40,000 SpMVs 

R-Mat, 223 vertices 
1024 cores 

* This research used resources of the National Energy Research Scientific Computing Center, which is supported 
by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. 

NERSC Hopper* 

**L1 norm method: computing 100 eigenvectors 
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•  Key question: How long will a partition be effective? 
•  Initial experiment 

–  Evolving R-Mat matrices: fixed number of rows, R-Mat parameters 
(a,b,c,d) 

–  Start with a given number of nonzeros (|e0|) 
–  Iteratively add nonzeros until new number of nonzeros is reached    

(|en|) 

Experiment Partitioning for Dynamic Graphs 

… 

Evolving Graph 

Initial Graph, G0 
e0 edges 

G1 
e1 edges 

Final graph, Gn 
en edges 
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•  |e0| = 0.5 |en| 
•  2D hypergraph surprisingly effective as edges are added to graph 

Results: Partitioning for Dynamic Graphs 

0.00E+00%

5.00E'11%

1.00E'10%

1.50E'10%

2.00E'10%

2.50E'10%

3.00E'10%
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1.0 0.9     0.8      0.7     0.6    0.5    
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|ei|/|en| 

* This research used resources of the National Energy Research Scientific Computing Center, which is supported 
by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. 

NERSC Hopper* 
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Results: Partitioning for Dynamic Graphs 

•  |e0| = 0.3 |en| 
•  2D hypergraph surprisingly effective as edges are added to graph 
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* This research used resources of the National Energy Research Scientific Computing Center, which is supported 
by the Office of Science of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231. 

NERSC Hopper* 



PP14 - 44 
MMW 2/18/14 

•  Big Data and High Performance Computing 
•  Anomaly Detection in Graphs 
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Moving Average Filter 

B = (A−E[A])
Moving Average Filter 

 
 

 
 
 E[As (t)]= hiAs (t − i)
i=1

T

∑

•  Option 1: explicitly form expected graph model matrix each time step 
–  Pro: Less computation (when nonzeros collide) than T SpMV ops 
–  Pro: Less communication than T SpMV ops 
–  Con: Very expensive (have to add and subtract matrices to form) 

•  Option 2: don’t explicitly form graph model matrix 
–  Pro: Avoid expensive matrix formation 
–  Con: Requires T SpMV ops (more communication, possibly more computation) 

•  Idea to improve option 2: fuse multiple SpMV operations 
–  Perform communication once 



PP14 - 46 
MMW 2/18/14 

Fused SpMV Operations 
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Moving average filter (T=10) 

Fusing SpMV operations can effectively reduce runtime 

E[As (t)]= hiAs (t − i)
i=1

T

∑
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Summary 

•  Outlined HPC approach to processing big data 
–  Signal processing for graphs  
–  Statistical framework for anomaly detection in graphs 

•  Key component is eigensolver for dimensionality reduction 
•  Solving eigensystems resulting from power law graphs 

challenging 
–  Load imbalance 
–  Poor data locality  

•  SpMV key computational kernel 
–  1D data partitioning limits performance due to all-to-all communication 
–  2D data partitioning can be used to improve scalability 

•  Dynamic graphs pose new computational challenges 
–  New computational kernels may be necessary (e.g., fused sparse 

matrix-dense vector operations) 
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